Entropic Discretization of a Quantum Drift-Diffusion Model
نویسندگان
چکیده
This paper is devoted to the discretization and numerical simulation of a new quantum drift-diffusion model that was recently derived. In a first step, we introduce an implicit semi-discretization in time which possesses some interesting properties: this system is well-posed, it preserves the positivity of the density, the total charge is conserved, and it is entropic (a free energy is dissipated). Then, after a discretization of the space variable, we define a numerical scheme which has the same properties and is equivalent to a convex minimization problem. Moreover, we show that this discrete solution converges for long times to the solution of a discrete Schrödinger-Poisson system. These results are illustrated by some numerical simulations.
منابع مشابه
An entropic quantum drift-diffusion model for electron transport in resonant tunneling diodes
We present an entropic Quantum Drift Diffusion model (eQDD) and show how it can be derived on a bounded domain as the diffusive approximation of the Quantum Liouville equation with a quantum BGK operator. Some links between this model and other existing models are exhibited, especially with the Density Gradient (DG) model and the Schrödinger-Poisson Drift Diffusion model (SPDD). Then a finite d...
متن کاملModélisation Mathématique et Simulation Numérique de Systèmes Fluides Quantiques. (Mathematical modeling and Numerical Simulation of Quantum Fluid Systems)
This chapter is devoted to the discretization and numerical simulation of a new quantum drift-diffusion model that was recently derived. In a first step, we introduce an implicit semi-discretization in time which possesses some interesting properties: this system is well-posed, it preserves the positivity of the density, the total charge is conserved, and it is entropic (a free energy is dissip...
متن کاملQuantum Energy-Transport and Drift-Diffusion models
We show that Quantum Energy-Transport and Quantum Drift-Diffusion models can be derived through diffusion limits of a collisional Wigner equation. The collision operator relaxes to an equilibrium defined through the entropy minimization principle. Both models are shown to be entropic and exhibit fluxes which are related with the state variables through spatially non-local relations. Thanks to a...
متن کاملQuantum–Corrected Drift–Diffusion Models for Transport in Semiconductor Devices
In this article, we propose a unified framework for Quantum–Corrected Drift–Diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical Drift–Diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum–correction to the electric potential. We examine two special, and ...
متن کاملQuantum Corrected Drift-Diffusion Models and Numerical Simulation of Nanoscale Semiconductor Devices
In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 43 شماره
صفحات -
تاریخ انتشار 2005